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Abstract—Sketch-based 3D model retrieval is to re-
trieve 3D models given a user’s hand-drawn sketch.
Due to the big semantic gap between rough sketch
representation and accurate 3D model coordinates,
sketch-based 3D model retrieval (SBR) is one of the
most challenging research topics in the field of 3D
model retrieval. To bridge the semantic gap, a novel
semantic tree-based SBR algorithm is proposed in this
paper. Given a 2D sketch query and a collection of 3D
models, a 3D semantic tree is built up first based on
the ontology structure of WordNet. Every leaf node in
the tree contains a set of 3D models assigned to this
class according to their semantic classification/label
information. Then, sketch components of the 2D query
sketch are identified by sketch segmentation and anno-
tation. Finally, by measuring the semantic relatedness
between the sketch components’ annotations and tree
nodes in the 3D semantic tree, the similarities between
the 2D sketch and 3D models are computed to find
out the most relevant 3D models. Experimental results
demonstrate the effectiveness and promising potentials
of our approach on sketch-based 3D model retrieval.

I. Introduction

Sketch-based 3D model retrieval is to retrieve 3D
models based on a query sketch. It plays an important
role in many applications including sketch-based rapid
prototyping, recognition, mobile 3D search, 3D printing,
and 3D animation production etc. Existing sketch-based
3D model retrieval systems are mainly based on a direct
content-based comparison between a 2D sketch query and
sample views of all target 3D models. However, there is
a big semantic gap between the iconic representation of
2D sketches and the accurate 3D coordinate representa-
tion of 3D models. This makes sketch-based 3D model
retrieval become the most challenging research problem
in the field of 3D model retrieval, which has been demon-
strated by their low performance on several latest bench-
marks including the SHREC’13 Sketch Track Benchmark
(SHREC13STB) [15] and the SHREC’14 Sketch Track
Benchmark (SHREC14STB) [18].

Motivated by the above obstacle, an interesting ques-
tion is raised: “Can we use semantic information?” Seman-

tic information describes high-level representation of both
sketches and 3D models and therefore provides a bridge to
reduce the gap between them. However, how to semanti-
cally compare 2D sketches and 3D models becomes a new
research problem (Which semantic information should be
considered? How can we extract it? How can we measure
the similarity between the semantic information?). In the
paper, we study these problems and propose a novel
semantic tree-based 3D model retrieval algorithm.

Given a 2D query sketch and a dataset of 3D mod-
els, we first build up a 3D semantic tree in two steps.
Step 1: Build a semantic tree based on the semantic
ontology in WordNet [21]. WordNet is a lexical database
of concepts/synsets, represented by a set of synonyms.
Each node in the tree represents one word, which has
one or more senses. Each sense has its synset and a set
of words are related through the following three relation-
ships: hypernyms/hyponyms (IS A relation), holonyms
(MEMBER OF relation) and meronyms (PART OF re-
lation). Step 2: Classify the 3D models into certain nodes
in the tree according to their semantic classification/label
information (i.e. semantic concepts or names). Then, we
identify the semantic attributes (i.e. semantic components)
that the 2D query sketch contains by sketch segmentation
and annotation. Finally, by measuring the semantic relat-
edness between the 2D sketch’s components and the nodes
in the semantic tree, we compute the similarities between
the 2D sketch and 3D models to find out the most relevant
3D models.

To our best knowledge, this work is the first attempt
to compare 2D sketches and 3D models at semantic level
with a tree structure. The implication of this work could
not only accelerate the research on sketch-based 3D model
retrieval, but also shed inspiring light on human’s sketch-
related research work. Our main contributions introduced
in this paper are highlighted as follows:

• A 3D semantic tree is created based on WordNet.
It contains 407 3D models across 10 categories,
which are located at different nodes in the tree.

• A novel semantic tree-based 3D model retrieval al-



gorithm is proposed. This approach can capture se-
mantic information of 2D sketches effectively, mea-
sure similarities between semantics of 2D sketches
and 3D models accurately, and therefore greatly
enhance the retrieval performance.

• Comprehensive experiments have been conducted
to compare the proposed approach and other state-
of-the-art sketch-based 3D model retrieval meth-
ods. The experimental results demonstrate the ef-
fectiveness and potential of the proposed approach.

• Our work will explicitly guide the research on
sketch-based 3D model retrieval and also provide
a direction for sketch-based related applications.

II. Related work

In this section, we will review two prior related research
directions: sketch-based 3D model retrieval, and WordNet-
based semantic multimedia retrieval.

A. Sketch-Based 3D Model Retrieval

Given a 2D sketch query and a 3D model dataset,
generally a sketch-based 3D model retrieval algorithm first
samples a set of views for each 3D model, and then extracts
a 2D shape descriptor to represent each view. Similarly, it
extracts the 2D shape descriptor for the 2D sketch query.
Next, it computes the minimum shape descriptor distances
between the query sketch and all sample views and regards
it as the sketch-model distance. Finally, it ranks all the
target 3D models by sorting all the sketch-model distances.

Li and Johan [13] proposed a sketch-based 3D model
retrieval algorithm based on 2D sketch-3D model align-
ment by using the view context feature proposed in [11]
and shape context-base 2D contour matching. The 2D
sketch-3D model alignment process shortlists a list of
candidate views of a 3D model from a number of (i.e. 81)
sample views to align it to a 2D sketch. It has achieved
the best performance in several Eurographics Shape Re-
trieval Contest (SHREC) tracks on the topic of sketch-
based 3D model retrieval, such as SHREC’13 Sketch
Track (SHREC13STB) [15] and the SHREC’14 Sketch
Track [18]. Still based on shape context-based matching,
Li et al. [17] further developed a sketch-based 3D model
retrieval algorithm based on the idea of performing view
clustering on the sample views of a 3D model to shortlist
candidate views for the purpose of sketch-model matching.

Recently, substantial research work has been performed
in sketch-based 3D model retrieval. For instance, the His-
togram of Gradient (HOG) feature has been used in [31],
followed by the Overlapped Pyramid of HOG (OPHOG)
feature by Tatsuma and Aono [16]. Later, Eitz et al. [5]
proposed the Gabor local line-based feature (GALIF),
while Li et al. [14] developed a parallel shape context-based
matching algorithm for the retrieval.

Four Shape Retrieval Contest (SHREC) [1], [15], [18],
[19] tracks on the topic of sketch-based 3D model retrieval
have been held in conjunction with the 2012, 2013, 2014
and 2016 Eurographics Workshops on 3D Object Retrieval

(3DOR). In each track, different methods have been eval-
uated on the corresponding benchmarks, for example, the
SHREC’13 Sketch Track Benchmark (SHREC13STB) [15],
which contains 7200 2D sketches and 1258 3D models of
90 classes, and the SHREC’14 Sketch Track Benchmark
(SHREC14STB) [18], which contains 13680 2D sketches
and 8987 3D models of 171 classes.

Huang et al. [8] proposed a data-driven 2D sketch
segmentation and labeling algorithm, which can effectively
and efficiently segment and label sketches of commonly
used objects. They built a ground-truth dataset which
contains labeled component information for 300 sketches
of 10 classes (each with 30 sketches): chair, table, airplane,
bicycle, fourleg, lamp, vase, human, candelabrum, and
rifle. To the best of our knowledge, it achieves a state-
of-the-art overall labeling accuracy, which is 66.7%.

B. WordNet-Based Semantic Multimedia Retrieval

As a lexical dictionary of semantic concepts, WordNet
has been vastly applied in semantic multimedia retrieval of
either text or image objects. Aslandogan et al. [2] utilized
WordNet for query and database expansion in image re-
trieval. Database expansion refers to expanding the meta-
data in the database. They considered synonyms of nouns
and verbs, different number of (first or all) senses of a word,
and other three relationships (IS A, MEMBER OF, and
PART OF) mentioned before. They found that for query
expansion the optimal setting is using synonyms of all
senses, or considering the synonyms and the IS A and
MEMBER OF relations of the first sense of a word.

Marszalek and Schmid [20] proposed to utilize Word-
Net to build a semantic and hierarchical graph for the
objects involved. Based on labeled training data, they
learned a binary classifier for each node in the graph.
Wang et al. [29] proposed to build an ontology based on
WordNet for a 3D model benchmark, infer 3D semantic
properties by rule engine based on Semantic Web Rule
Language (SWRL), and perform semantic retrieval using
the ontology.

A survey on three typical semantics processing (rele-
vance feedback, machine learning, and ontology) has been
performed in [6], while Tousch et al. [28] presented a survey
on semantics-based image annotation.

WordNet-Based Semantic Distance Metrics. To
measure the relatedness of two semantics in WordNet,
several semantic similarity and relatedness metrics have
been proposed. For example, Pedersen et al. [26] imple-
mented three similarity measures that are based on path
lengths between concepts: lch [9], wup [30], and path; and
three semantic relatedness measures: hso [7], lesk [4], and
vector [22]. Other semantic relatedness and similarities
have been proposed in [23] and [25], as well.

WordNet-Based Sense Disambiguation. When we
look up a word from WordNet, it usually lists several
senses of the word to indicate the different meanings that
the word may have in different text contexts. Therefore,
deciding which sense should be adopted for a situation,
that is word sense disambiguation, is very important for



Fig. 1. Framework of our semantic tree-based SBR algorithm.

its correct interpretation. Different approaches have been
proposed for word sense disambiguation. For example, for
such purpose, Banerjee and Pedersen [3] proposed using
an adapted Lesk algorithm for word sense disambigua-
tion. The main idea of the original Lesk algorithm [10]
is based on the following two hypotheses: a word in a
sentence can be disambiguated by its neighboring words
by assigning the most closely related sense to it; and
overlapping words in the glosses of neighboring words
are helpful to identify their related senses. Therefore,
they conducted sense disambiguation by comparing the
number of overlapping words between the gloss of a word
and the glosses of its neighboring words. Pedersen et al.
also developed several software for sense disambiguation,
such as WordNet::SenseRelate::WordToSet [24], which is
specially designed for the sense disambiguation problem
for one word per a set of related words.

III. Algorithm

In this paper, a semantic tree-based SBR algorithm is
proposed to retrieve relevant 3D models similar to a 2D
sketch query. The framework of our approach is illustrated
in Fig. 1. The details of every module are described as
follows.

1) Input. Users draw a 2D sketch as an input. The
retrieval algorithm is to find relevant 3D models to the
query in the given 3D model database.

2) 2D Sketch Segmentation and Annotation. 2D
sketch segmentation is to partition a query 2D sketch q
into a set of consistent semantic components {Ci}. For
the i-th component Ci, we assign a semantic name as a
component attribute A

q

i of the query sketch q according
to the PART OF relationship. After this step, each com-
ponent has a semantic label. For example, a human sketch

can be segmented and labeled into the following parts:
foot, hand, leg, arm, body, and head, as shown in Fig.1.
Some part labels may appear more than once, such as the
foot, leg and arm labels in this example. Considering the
best performance, for this step, we employ the 2D sketch
segmentation and labeling algorithm proposed in [8].

3) Semantic Tree Construction. Given a 3D model
database, a 3D semantic tree, as shown in Fig. 1, is built
up, which is a hierarchy of classes (nouns) based on the
semantic hierarchy in WordNet. Each class has several
attributes (i.e. is-a, has-part, or is-made-of relations) ac-
cording to its gloss defined in WordNet. Each leaf node of
the 3D semantic tree has a number of 3D models belonging
to the leaf node class. Therefore, the 3D semantic tree
forms a network of classes, attributes and models: a)
Classes: The 3D models in the target 3D model dataset
are classified into a number of classes, which correspond
to the leaf nodes, denoted as N={Ni}, in the WordNet-
based hierarchical tree; b) Attributes: Each leaf node
Ni possibly has several semantic attributes (i.e. semantic
components) according to its definition (gloss), denoted
as {Aij}; c) 3D models: We assume that all the existing
target 3D models can be pre-classified into a set of leaf
nodes (classes) according to their available/learned label
information, while new models can be dynamically and
automatically classified and inserted into the 3D semantic
tree. One such example is ShapeNet [27].

4) Word Sense Disambiguation. To compute the
semantic relatedness value between a labeled semantic
component of the 2D sketch query and the name of a 3D
model category, we need to decide which sense (meaning)
that the label name should take. Motivated by the two
hypotheses of the Lesk algorithm, for each component’s
label, we regard other components’ labels as its context.



Then, we perform its sense disambiguation by counting
the number of overlapping words between the gloss of the
component’s label and the glosses of other components’
labels. Considering the fact that any two components of
a sketch, though logically related, are often semantically
different (thus using similarity metrics is inappropriate),
we choose the Lesk relatedness metric to measure their
similarities.

5) Semantic Similarity Computation. Semantic
similarity computation is to compute the sketch-model
similarity S(q, Ni) based on the component-wise related-
ness R(Aq

i , Ni) between a component attribute A
q

i of the
query sketch q and a semantic class Ni. Thanks to the
WordNet gloss and semantic hierarchy in the 3D semantic
tree, the relatedness between a set of sketch segments’
names and the gloss of a model’s class name can be easily
measured by using the algorithm hso [7] and lesk [4]. We
find that hso performs the best in our experiments.

Moreover, the complexity of sketches may be an impor-
tant factor in deciding the query-sketch semantic similar-
ity. While, the sketch complexity can be measured based
on the number of components in the sketch. In order to
explore how much the consideration of sketch complexity
will affect the semantic similarity measurement, we have
developed three relatedness fusion methods: Average, Sum
and Product. These three methods treat sketch complex-
ity differently in measuring the semantic similarity. The
Average method divides the total sum of component-wise
relatedness values by the total number of components n
in the sketch query. The Average method doesn’t consider
sketch complexity in distance measurement. The Sum
method directly adds all component-wise relatedness val-
ues together in order to integrate the sketch’s complexity
into the semantic similarity. The Product approach further
multiplies the value computed in the Sum method by n
in order to assign a bigger weight for more complicated
sketches. Based on our experiments, the Product approach
performs the best.

6)Ranking and output. Sort query-class similarity
S(q, Ni) in a descending order and then list all the models
in respective classes accordingly.

IV. Experiments and Discussions

A. Benchmark

2D sketch dataset: We randomly selected sketches
from the 300 sketches dataset collected in [8] as queries
for our retrieval algorithm. These sketches are equally
classified into 10 classes: chair, table, airplane, bicycle,
fourleg, lamp, vase, human, candelabrum, and rifle. Ten
query sketch examples are shown in Fig. 2.

3D model dataset: We collected 407 models in total
for the same 10 classes: airplane (70 models), bicycle (38
models), candelabrum (28 models), chair (70 models),
quadruped (20 models), human (20 models), lamp (20
models), rifle (19 models), table (61 models), and vase (61
models). Fig. 3 shows one example for each class.

Evaluation metrics: To conduct a comprehensive
and comparative evaluation between our semantic tree-

Fig. 2. Example 2D sketch queries.

Fig. 3. Example 3D models.

based 3D model retrieval algorithm and other traditional
content-based 3D model approaches on the above bench-
mark, we adopt seven commonly used performance met-
rics [12] in the information retrieval area: Precision-Recall
(PR) diagram, Nearest Neighbor (NN), First Tier (FT),
Second Tier (ST), E-Measures (E), Discounted Cumulated
Gain (DCG), and Average Precision (AP).

B. Experimental Results and Discussions

Steps 1 & 2: 2D sketch segmentation and an-
notation. To find out the best performance that can be
achieved for our semantic approacch, we perform sketch
segmentation on the query sketch and annotate the sketch
components with the ground-truth segment labels in the
sketch dataset [8]. As mentioned, currently the state-of-
the-art accuracy [8] is around 67% on the sketch dataset
[8].

Step 3: Word sense disambiguation. The sense
numbers in the latest WordNet v3.1 are used. Our manual
(as a baseline) and automatic word sense disambiguation
results for all the ten queries are shown in Fig. 4 and
Fig. 5, which show that there is still much room for further
improvement in this step.

Fig. 4. Manual word sense disambiguation for the component labels
of the ten query sketches.



Fig. 5. Automatic word sense disambiguation for the component
labels of the ten query sketches based on the Lesk relatedness metric.

Step 4: Semantic similarity computation. The
hso [7] relatedness approach is adopted for its great per-
formance.

Step 5: Ranking and output. Based on the query-
class semantic similarity values, we rank the classes and
the corresponding 3D models accordingly.

We designed a set of experiments to fully test and
compare the following approaches on sketch-based 3D
model retrieval: 1) our semantic tree-based SBR algo-
rithm (TSBR) with different relatedness fusion meth-
ods (Product, Sum, and Average); 2) our semantic tree-
based SBR algorithm with automatic word sense disam-
biguation for the query sketch component labels (TSBR-
AWSD); 3) other traditional content-based 3D model
retrieval approaches. Two shape context matching-based
approaches SBR-VC and SBR-2D-3D perform the best on
the SHREC’13 Sketch Track Benchmark [15]. They either
shortlist four candidate views (SBR-2D-3D) or cluster a
few representative views (SBR-VC) based on the same set
of 81 sample views for each 3D model. Here, we implement
a brute-force shape context-based matching algorithm de-
noted as SBR. SBR considers all the 81 sample views for
each model and therefore outperforms both SBR-VC and
SBR-2D-3D due to its completeness.
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Fig. 6. Comparison of Precision-Recall plots of our approaches and
SBR [15].

Fig. 6 and Table I show the comparison results in terms
of the seven evaluation metrics. We find that our approach
with the Product approach performs the best, consecu-
tively followed by the Sum and Average approaches. We
believe this is due to the enhancement effect in the differ-
entiation ability of the Product approach after considering

TABLE I. Comparison of six performance metrics of our
approaches and SBR [15].

Benchmark NN FT ST E DCG AP

TSBR-Product 0.70 0.70 0.79 0.51 0.84 0.75

TSBR-Sum 0.60 0.60 0.76 0.45 0.79 0.67

TSBR-Average 0.60 0.60 0.69 0.45 0.79 0.66
TSBR-AWSD 0.20 0.32 0.50 0.24 0.59 0.37

SBR 0.20 0.07 0.14 0.06 0.46 0.11

Fig. 7. Query-class hso semantic similarity matrix for the 10 queries.
Each row/column is for a query/class according to the order in
Fig. 2/3.

the 2D sketch complexity. As expected, automatic word
sense disambiguation achieves 50%∼75% performance of
manual word sense disambiguation. Most importantly, our
approaches dramatically improve retrieval performance
compared with traditional content-based 3D model re-
trieval methods (SBR). For a further validation, we also
tested SBR on all the 300 sketches collected in [8] as well
and found consistent (similar) SBR performance: NN: 0.07,
FT: 0.08, ST: 0.17, E-Measure: 0.06, DCG: 0.47, AP: 0.11.

Fig. 7 shows the query-class hso semantic similarity
matrix of TSBR-Product for the 10 queries. It is observed
that there are non-trivial differences in terms of the hso
relatedness values for different classes, which helps us to
separate different classes easily. Fig. 8 lists the ranked
classes (one example per class) accordingly. These ranking
results show that our approach can successfully find the
most relevant classes given a query sketch.

In a word, these experimental results demonstrate that
our semantic search approach has achieved outstanding
results on 3D model retrieval, though currently only on
a small benchmark. Our approach can capture semantic
information of 2D sketches effectively, measure similar-
ities between semantics of 2D sketches and 3D models
accurately, and therefore largely enhance the retrieval
performance.

V. Conclusions

In this paper, we propose a semantic tree-based ap-
proach to retrieve 3D models given a 2D sketch query. To
measure the semantic similarity between a query 2D sketch
and a 3D model, we utilize WordNet ontology to compute
the semantic relatedness between the annotations of the
sketch’s components and a 3D model class. During the
computation, we also perform word sense disambiguation
to assign correct meaning for components’ labels. Exper-



iments have demonstrated the superior performance of
our approach than the traditional content-based 3D model
retrieval approaches.

Fig. 8. Ranking classes for the 10 queries. One example for each of
the 10 classes is displayed according to their ranking order.
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